
Millistructured Heat Exchangers Reactors for Power to X applications

G.Geffraye

Advanced Power-to-Gas and Power-to-Liquids Technologies (e-fuels) 8-9 march 2021

Context of thermocatalytic conversion component development

Inlet gases: CO₂, CO, H₂, other

Catalyst

Identification of active catalyst

Determination of operating conditions

Kinetic modelling

Characterization and long term behavior

Reaction specificity

Exothermal / Endothermal Equilibrium / Total conversion Selective / not selective Direct / Indirect pathway

Reactor

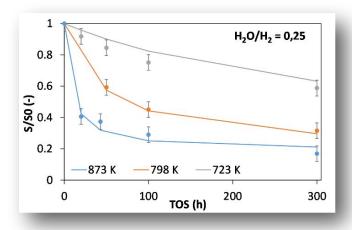
Multiphysic modelling of reactor behavior
Design proposal
Experimental validation
Upscaling proposal

Products : CH₄, MeOH, olefins, syncrude (+ Specs)

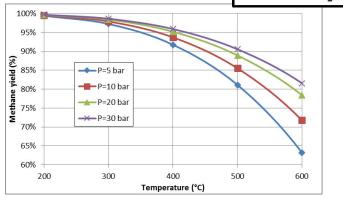
Reactors developments: case of methane synthesis

Reactors developments for liquid production

3

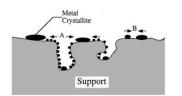


Reactor developments for PtG: Thermodynamics and catalyst activity


Sabatier reaction : $CO_2 + 4H_2 \Leftrightarrow 2H_2O + CH_4 \quad (\Delta_r H_{298} = -165KJ/mol)$

 $Y_{\text{CH4}} = \frac{F_{\text{CH4,outlet}}}{F_{\text{CO}_2,\text{inlet}}}$

- Equilibrated, highly exothermic, and catalyzed by metals
- ✓ Thermodynamics favored at low temperature Yield > 97% for T<300°C</p>
- Catalyst activity favored at high temperature




Ni surface (TPD) time evolution at 3 temperatures

Methane yield calculated by Gibbs energy minimization for H_2 :CO₂ = 4:1

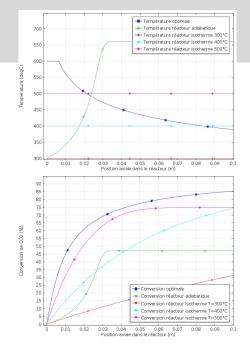
Deactivation mechanisms favored at high temperature
Poisoning, carbon deposition, thermal degradation, attrition, crushing

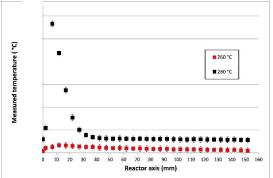
Reactor developments for PtG: SoA

Temperature management issue :

- High enough to promote the reaction kinetics
- Low enough to favor thermodynamics (conversion, selectivity)
- Outside of critical ageing temperature ranges (thermal ageing and volatilization) to reach acceptable catalyst lifetime

	Adiabatic fixed-bed	Cooled fixed-bed	Fluidized bed	3 phase reactors	Micro-reac tor	Monolith	7	Milli-structur ed	1
Operation mode	Adiabatic	Polytropic	Isothermal	Isothermal	Polytropic	Polytropic		Polytropic	
Process complexity	High	Low	Low	Low	Low	Low		Low	
Catalyst				Fludized or suspended	Coated	Coated		Packing	
Particle size	Millimeters	Millimeters	100-500 μm	< 100 μm	<200 μm	< 100μm		< 1 mm	
GHSV			Low	Low-medium	Very high	Very high		High	
TRL	9	7	7	4-5	4-5	4-5	_	5-6	

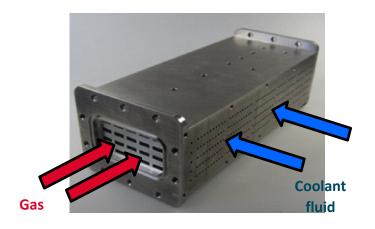

Modified from Catalytic reactors classification based on hot spot temperature

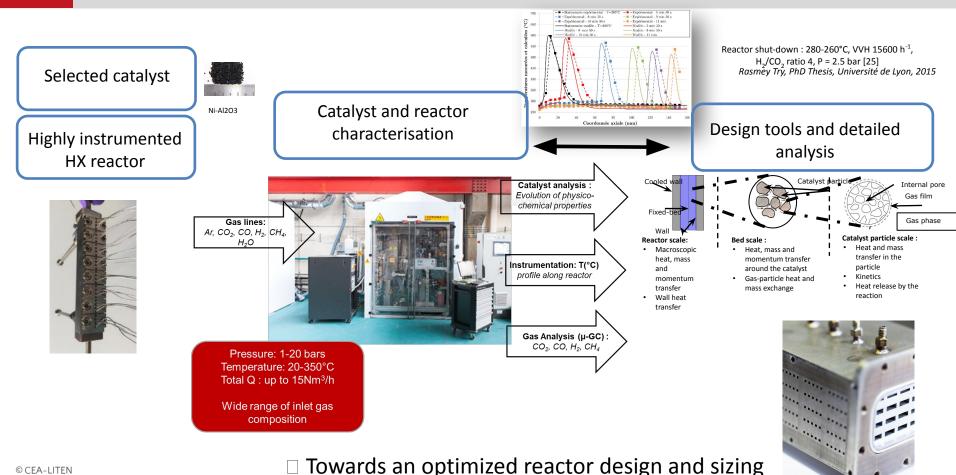

S. Rönsch, Fuel 166 (2016) 276–296

✓ Enhancement of temperature control

Compacity & Modularity

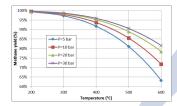
High conversion rate




Reactor developments for PtG: Millistructured reactor

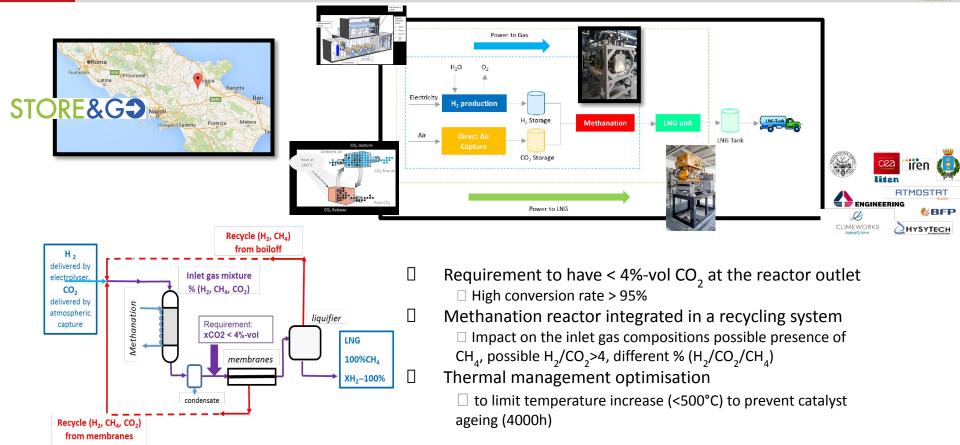
- ☐ Millimetric reaction channels (<cm)</p>
 - intensification of heat and mass transfer
- Millimeter-scale catalyst particles
 - high catalyst density and easy loading
- Intensification cross flow cooling with a thermal liquid
- □Compactness
- ☐Safety: coolant organic oils
- Modular concept (easy scale-up by numbering-up reactive channels and coolant channels)
- ☐ Easy maintenance

Reactor developments for PtG: Methodology



Reactor developments for PtG: Reactor roadmaps

Technology selection

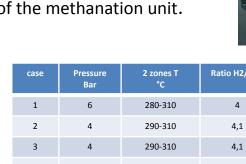


R&D and technological survey

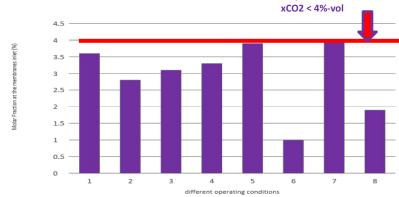
Reactor developments for PtG: Example of STORE&GO project (TROIA demo)

Reactor developments for PtG: STORE&GO methanation reaction development

manufactured by KHIMOD


Manufacturing and test a one stage module of 0.8m3/h (NTP) reactor

Design based on numerical simulations, experimental analysis, and taking into account the manufacturing experience


Dimensions (Length x Width x Thickness): ~100 x 400 x 200 mm.

A large Matrix of labscale tests at CEA to: Support the design of the full scale geometry Guide the definition of optimal operation points of the methanation unit.

Requirement:

case	Pressure Bar	2 zones T °C	Ratio H2/CO2	CH4 % vol
1	6	280-310	4	5
2	4	290-310	4,1	6
3	4	290-310	4,1	0
4	4	280-310	4.1	0
5	4	280-310	4	6
6	2,5	290-290	4.5	0
7	2,5	290-310	4,1	0
8	2,5	280-280	4,5	0

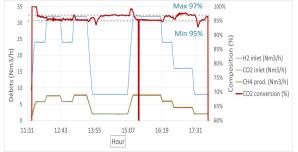
© CEA-LITEN

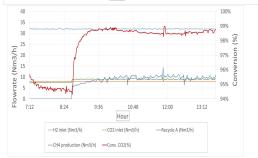
Reactor developments for PtG: STORE&GO methanation unit in TROIA

Fully integrated unit in two 20' containers.

4 Heat Exchangers Reactors


H2 inlet flow: 8 to 40 Nm3/h (with recycle)


CO2 inlet flow: 2 to 10 Nm3/h (with recycle)



All data and figures are from KHIMOD

Conversion performances:

unit under 5 to 10 minutes.

- Close to thermodynamic equilibrium maintained over a wide range of flow rates (H₃ from 8 to 32 Nm3/h & without recycle)
- Conversion above 95% without recycle.

Flexibility of methane production to fit the fluctuation of CO, or renewable electricity: Fast response time of the overall methanation

Despite of the load variations, keep the same :

- High level of conversion ratio.
- Output gas composition

Recycle capacity of the methanation unit increases methane production increasing significantly the conversion of CO₂ thanks to the recycle of H₂.

- CO₂ conversion rises from 94% to 99%
- Unconverted H₂ is recycled and finally completely converted into methane
- The methane outlet produced is compliant to the LNG production (%CO, <0.5%)

Reactors developments: case of methane synthesis

Reactors developments for liquid production

effluent

Catalyst

Steam

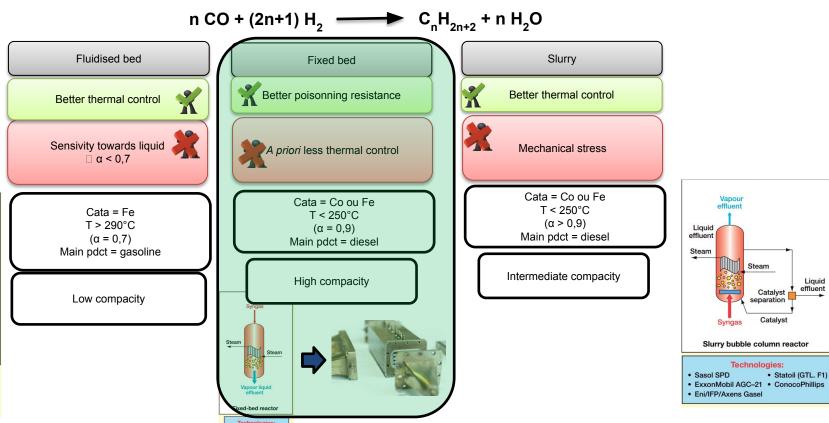
Fluidised-bed reactor

Technologies:

· Sasol synthol (CFB)

· Sasol SAS (FFB)

Steam


Liquid

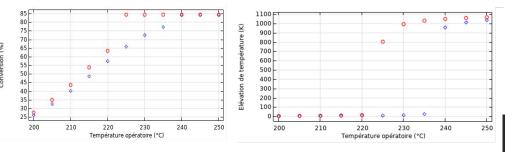
effluent

Reactor developments for syncrude production: SoA

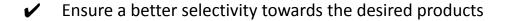
Shell SMDS

Cata = Fe,Co T ≈ 200°C-350°C, P ≈ 20 bars

Liquid

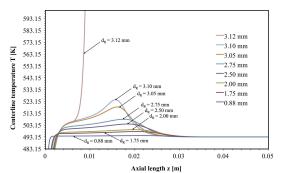


Reactor developments for syncrude production: Millistructured FT reactor sizing

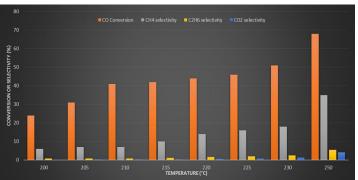

Chabot G. & al, Chemical Engineering Science, 2015

FT reactor design based on bibliography, preliminary simulations (*) and first experimental tests \Box 'low' channel height to

✓ Limit the rise in temperature and preventing the aging of the catalysts

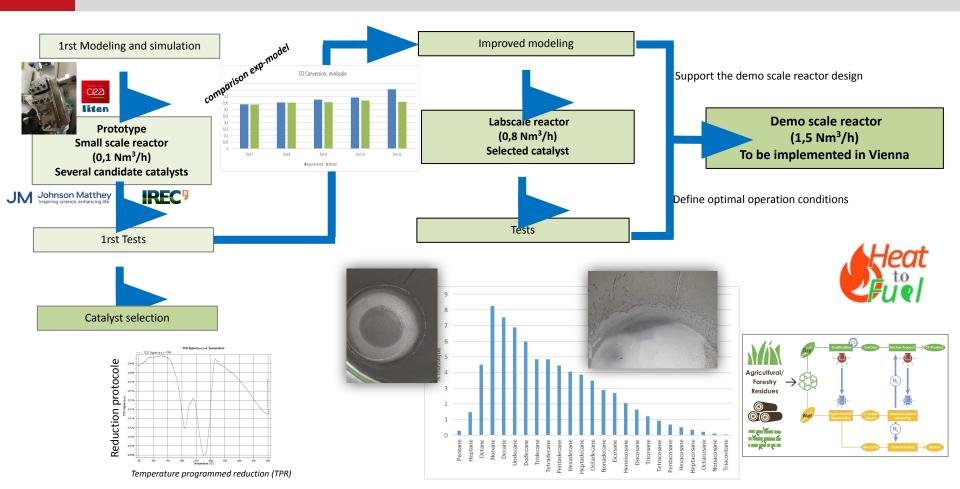


Evolution of the maximum increase temperature &conversion function of temperature for two channels height (red=blue+1mm)

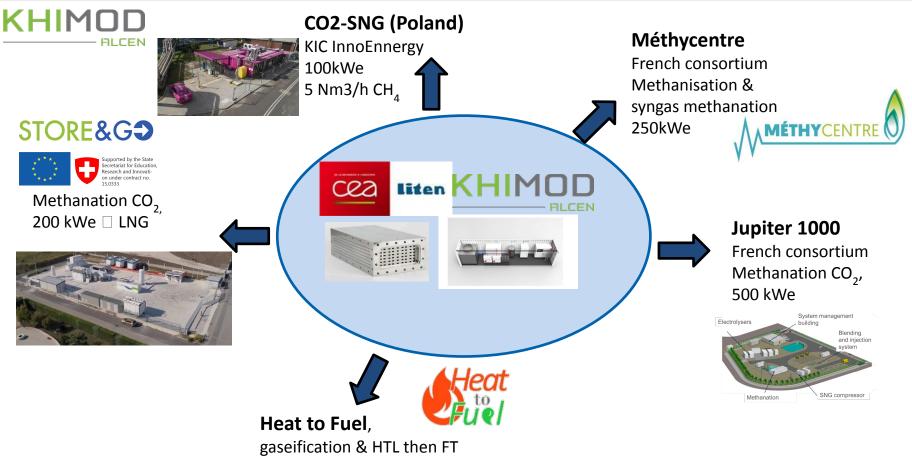


(*)Specificities for simulation:

- Multiphysics
- Triphasic system (gas-liquid-solid)
- Innovative catalyst => few data available (no kinetics, thermal properties ...)


Influence of the reaction channel diameter on the temperature along axial direction

Temperature sensitivity of the coolant and the inlet gases (H2 /CO) Evolution of CO conversion and selectivities to methane and ethane



Reactor developments for syncrude production: Example of Heat to Fuel project

Millistructured Heat Exchangers Reactors for Power to X applications: Overview of the demos

Thanks!