

BtL and PtL, differences and similarities at technical level

Reinhard Rauch

KIT - The Research University in the Helmholtz Association

www.kit.edu

KIT Figures and Facts

59 Spinoffs and Startups 371 Trainess	Campuses – 200 ha area	368 Professors and executive scientists
	24,381 Students	
300 Buildings with a usable area of 478,000 m ²		KIT budget 2019
	3,100 Doctoral students	EUR 951 million
40 Patent applications		39% 28% State
	9,398 Employees	Third- party funds
1,178 international scientists		Status: July 2020

Biomass to Liquid (bioliq®)

EnergyLab 2.0

Types of renewable fuels

1st generation biofuels

- Biodiesel by transesterification of vegetable oils
- Ethanol from fermentation of sugar and starch
- Biodiesel by hydroprocessing of vegetable oils
- 2nd generation biofuels
- Synthetic fuels produced from synthesis gas (Fischer Tropsch Fuels, DME, etc.)
- Ethanol from lignocellulosic biomasses via fermentation
- Pyrolysis oil upgrading by hydroprocessing
- 3rd generation (bio) fuels
- Algae, hydrogen..., Power to Liquids

TRL 9, but food versus fuel debate

TRL 5-7, direct and indirect land use change

TRL 1-5, No more limitations !

Biomass to Liquids (FT- Route)

Prof. Dr. Reinhard Rauch

Prof. Dr. Reinhard Rauch

Fischer Tropsch Synthesis

$CO + 2H_2 \implies -(CH_2) - + H_2O$

Parameter	Low-temperature	High-temperature		
	FT	FT		
Products	Waxes and/or diesel fuels	Gasoline, light olefins		
Temperature [°C]	220 - 250	330 - 350		
Pressure [bar]	25 - 60	25		
CO + H ₂ conversion [%]	60 - 93	85		

Catalytical Reactors in FT-Synthesis

Methanol synthesis

$$CO + 2H_2 \leftrightarrow CH_3OH$$
$$CO_2 + 3H_2 \leftrightarrow CH_3OH + H_2O$$
$$CO + H_2O \leftrightarrow CO_2 + H_2$$

$$SN = \frac{(H_2 - CO_2)}{(CO + CO_2)} = 2 \text{ to } 2,1$$

Today low pressure prefered:

- **50 100 bar**
- **2**30 270 °C
- Cu/ZnO/Al₂O₃ or Cu/ZnO/Cr₂O₃

Inerts like N_2 , Ar, CH_4 as low as possible

Reactors for Methanol synthesis

http://www.linde-

engineering.com/de/process_plants/hydrogen_and_synthes is_gas_plants/gas_generation/isothermal_reactor/index.html

Wurzel, T., 2006, Lurgi MegaMethanol Technology, DGMK Conference "Synthesis Gas Chemistry", October, 4. – 6., 2006.

Reactors for Syngas Production from Biomass

Comparison PTL BTL – GTL - crude oil

	Plant capacity				
	feedstock		product	Invest	efficiency ²
	kt a⁻¹	GW ¹⁾	GW ¹⁾	Mio €/GW _{Pr.}	%
Power to Liquids ⁶⁾ (PtL)	-	0.1	0.04	~5000	40
Biomasse – FTS ³⁾ (BTL)	1000	0.65	0.3	1500-3000	45
Natural gas – FTS (GTL)	3100	5.5	3.3	400-750 ⁴⁾	60
Crude oil-refinery (Referenz)	15000	21.8	19.6	350-500 ⁵⁾	90

 $^{\rm 1)}$ as upper heating value $\rm H_{S}$

 $^{\rm 2)}$ Definition over $\rm H_{S}$ in product and feedstock

³⁾ [Deutsche Energie-Agentur GmbH (Dena), Biomass to Liquid – BtL.

Realisation study (Summary), final report, 2006]

⁴⁾ Equivalent 25000 – 50000 US \$ b⁻¹

⁵⁾ Using German standards

⁶⁾ Typical demoprojects discussed in Germany

Conclusion

- There are many similarities between PtL and BtL, the synthesis step is almost the same, main difference are:
 - Gas composition
 - Operation mode, as BtL is steady state and PtL is fluctuating
- All reactors from BtL can be also used in PtL, some has advantages for flexible operation, like slurry reactors
- Advanced control concepts, like model based control are very interesting
- Economy of scale is one major hurdle for BtL and PtL compared to fossil technologies
- Hybrid systems, where BtL and PtL are combined could offer some advantages for locations in Europe, like winddiesel (www.winddiesel.at)

Questions ?

H₂:CO = Fischer Tropsch CO₂ - separation 2:1 Gas Condenser Dry comp. synthesis cleaning H₂: 15% Dry comp.: CO: 37% H₂: 63% High Efficiency CO: 41% CO: 31% Gas cleaning CH₄: 5% CO₂: 0% CH4: 4% H₂O: 16% °O₂ output Syngas generation Steam steam generation FT - product M separation Condenser Biomass Additional necessary Winddiesel Steam = 0,5% Equipment: CO2=99,5% These + Renewable H₂ FT unit 70% CO>-rec. = 100% generation larger steam CO₂-output = 0%

Winddiesel full load operation-Full electrolysis power

Prof. Dr. Reinhard Rauch

Engler-Bunte-Institute, Fuel Technology Karlsruhe Institute of Technology

Engler-Bunte-Ring 1, building. 40.51, Room305 D-76131 Karlsruhe

Tel.: +49 721 608-42960 Mobil: +49 174 9675356 Reinhard Rauch@kit edu http://ceb.ebi.kit.edu