

PRODUCTION OF RENEWABLE HYDROGEN AND SYNGAS VIA HIGH-TEMPERATURE ELECTROLYSIS Oliver Posdziech

Head of Large Systems Development Sunfire GmbH

Heat-to-Fuel interfaces to advanced Power-to-Gas and Power-to-Liquids Technologies (e-fuels), 2021-03-08/09

SUNFIRE INTRODUCTION

SOEC ELECTROLYSER TECHNOLOGY

2

MARKETS AND APPLICATIONS

TECHNOLOGY DEMONSTRATION

SUMMARY AND OUTLOOK

AT A GLANCE Sunfire is a leading electrolysis company.

Sunfire at a glance

- Established in 2010, Sunfire is a **leading** electrolysis company.
- Sunfire offers both pressure alkaline (AEL) and solid oxide (SOEC) electrolyzers, providing a unique product portfolio suitable for every hydrogen application.
- Fewer than ten credible electrolysis companies face a politically set EU green hydrogen market of EUR 18 bn until 2030; Sunfire is one of them.
- Green hydrogen from electrolysis is a **once-in-a-generation opportunity**.

OUR MISSION

We provide superior electrolysis solutions to produce renewable hydrogen and e-Fuel

sunfire[®]

TECHNOLOGY COMPARISON

SOEC and Alkaline each have individual strengths that are valued by customers

Core Advantages

- Highest conversion efficiency $(84\%_{LHV to AC})^{2)}$
- · Industrial off-heat integration via steam provision
- · CO₂ reduction capability

Core Advantages

- Proven technology (> 20 years)
- \cdot Competitive price (650 EUR/kW_{AC})
- Pressurized hydrogen production (30 bar)

1) External vaporization lowers energy demand by 16% while better kinetics allows additional efficiency increase. In total, SOEC provides > 20% more hydrogen or syngas output per kWh_{el} 2) Referring to overall system efficiency given steam @ 150°C and atmospheric hydrogen pressure

SOEC | DESIGN

Stacks are integrated into modules which are integrated into electrolyzer systems

SUNFIRE INTRODUCTION

SOEC ELECTROLYSER TECHNOLOGY

5

2

MARKETS AND APPLICATIONS

TECHNOLOGY DEMONSTRATION

SOEC ELECTROLYSER TECHNOLOGY

SOEC outperforms low-temperature electrolysis technologies

- Due to the dissociation of steam,
 SOECs require less energy
 compared to liquid water
- SOEC has a theoretical minimum stack efficiency advantage of 16 % assuming optimal lowtemperature conversion
- One-third of the total energy comes from heat → SOECs require less renewable electricity
- Compared to state-of-the-art low temperature electrolysis, SOECs achieve a 30 % higher conversion efficiency on a system level

UNIQUE FEATURES OF SOEC ELECTROLYSIS Hydrogen and syngas production

Renewable hydrogen as feedstock for industries

Use of steam where waste heat is available → Ideal for coupling with exothermic synthesis processes

Conversion efficiency¹⁾: > 84 %_{LHV to AC} Hydrogen output: 750 Nm³/h (12 modules)

Power consumption: 3.6 kWh/Nm³ Hydrogen quality: > 99.99 Vol.-%

Applications

Electrolyser Generation 2

SynLink

Clean syngas as feedstock for green hydrocarbon products

Direct conversion of CO₂ and H₂O to syngas in one single process step is unique to SOEC.

Conversion efficiency¹: > 82 %_{LHV to AC} Syngas output: 750 Nm³/h Power consumption: 3.85 kWh/Nm³ Syngas (H₂ / CO) ratio: 1.5 ... 3.5

Applications

1) Referring to overall system efficiency given steam @ 150 $^\circ\mathrm{C}$

SOEC ELECTROLYSER TECHNOLOGY Technology status and targets

Efficiency ¹⁾	2020	2025	2030
HyLink	84 %	86 %	88 %
SynLink	82 %	84 %	86 %
Durability			
Stack lifetime Degradation	40,000 h 20 mΩcm² / kh	60,000 h 8 mΩcm² / kh	75,000 h 7 mΩcm² / kh
Levelized cost of hydrogen ²⁾	EUR 5.00 / kg _{H2}	EUR 2.30 / kg _{H2}	EUR 2.00 / kg _{H2}
 Lower heating value to alternating Assuming electricity costs of EUR 3 	g current 35 / MWh		

HyLink efficiency & power consumption: 88 $\%_{LHV,AC}$ \rightarrow 104 $\%_{HHV,AC}$ \rightarrow 3.4 kWh/Nm³ \rightarrow 38 kWh/kg

SUNFIRE INTRODUCTION

SOEC ELECTROLYSER TECHNOLOGY

3

5

2

MARKETS AND APPLICATIONS

TECHNOLOGY DEMONSTRATION

SUMMARY AND OUTLOOK

MARKETS AND APPLICATIONS

Sunfire target markets

- Renewable Fuel Partnership: Strategic bond with Neste, largest renewable fuel producer
- e-Fuel: Production at spots with low electric costs and high RES share
- Paving the path to renewable aviation and maritime transports

1) Cumulated revenues 2020-2030

- efficiency and lowest H₂ costs in the market
- Steel EPC Partnership: Strategic alliance with SMS group – the world's leading steel EPC
- Steel industry is among the largest contributors of greenhouse gas emissions -7-9% of total emissions
- Direct Reduced Iron (DRI) saves up to 95% of CO₂ emissions

- efficiency and lowest H₂ costs in the market
- Refineries need to fully decarbonize their value chain until 2050.
- As per **RED II**, fuel suppliers need to reach an average share of renewables of 14 % in 2030
- · Substituting fossil-based with renewable hydrogen is a low-cost way to increase the share of renewables in transportation.

sunfire

MARKETS AND APPLICATIONS

Co-electrolysis: High-efficient Power-to-Liquid applications

- Legacy Power-to-Liquid (PtL) technologies require 3-step process including a CAPEXintensive and inefficient Reverse-Water-Gas-Shift (RWGS) reactor.
- Sunfire's Co-Electrolysis technology results in a 2-step-process with lower CAPEX investments.
- <u>30 % higher efficiency</u> due to fewer process steps and heat integration from downstream exothermic synthesis process (e.g. Fischer-Tropsch)

1) Reverse-Water-Gas-Shift reaction is required in order to generate carbon monoxide (CO)

SUNFIRE INTRODUCTION

SOEC ELECTROLYSER TECHNOLOGY

3

5

2

MARKETS AND APPLICATIONS

TECHNOLOGY DEMONSTRATION

SUMMARY AND OUTLOOK

#1 GrInHy: Production of renewable hydrogen for green steel-making SALZGITTER FORSCHI ING Supply of 100 tons of renewable hydrogen for green steel making. lember of the Salzgitter Group Objective SALZGITTER FLACHSTAHL A Member of the Salzgitter Group Technology 150 kW Sunfire HyLink (2016) and 720 kW Sunfire HyLink Gen. 1 (2020) PAUL WURTH **CAPEX** Total budget EUR 4.5 million (2016) and EUR 6 million (2020); / sunfire tenova Sunfire budget EUR 2 million (2016) and EUR 3 million (2020) Achievements 15,000 hours operating period, efficiency of up to 82 % proven in GrInHy1 Upscaling Salzgitter Steel works has a strategic commitment to achieve zero-carbon steelmaking by 2050 (project name "SALCOS"). Salzgitter 2016 2017 2018 2020 Timeline 1st FCHJU funding Start of operation 2nd FCHJU funding Start of operation

granted

sunfire

granted

150 kW HyLink

Production of Renewable Hydrogen and Syngas

730 kW HyLink

#1 GrInHy: Production of renewable hydrogen for green steel-making

- GrInHy1.0 Reversible SOC system with 3 operation modes
 - electrolysis for hydrogen production and downstream injection in pipeline
 - hydrogen fuel cell for power production
 - natural gas fuel cell for power production
- Technical specification

Operation Mode	SOEC mode	H2-SOFC mode	NG-SOFC mode
rSOC AC Power	143 kW	30 kW	25 kW
HPU AC Power	12 kW	-	-
Hydrogen Production	40 Nm³⁄h	-	-
Dynamic Range	50125 %	30100 %	30100 %
rSOC AC Efficiency	84 % _{LHV}	47 % _{LHV}	50 % _{LHV}

#1 GrInHy: Production of renewable hydrogen for green steel-making

Public

Objectives of GrInHy2.0

- Electrolyser scale-up to 720 kW_{eLAC} ۲
- Hydrogen production 200 Nm³/h (18 ٠ kg/h) \rightarrow up to 37 Nm³/h per module
- Efficiency 84 %_{el,LHV} (< 40 kWh_{el,AC}/kg) ٠
- Operating times (target):
 - > 15 000 h system
 - > 20 000 h stack

#2 MULTIPLHY: Renewable hydrogen for a refinery

sunfire[®]

SUNFIRE INTRODUCTION

SOEC ELECTROLYSER TECHNOLOGY

5

2

MARKETS AND APPLICATIONS

TECHNOLOGY DEMONSTRATION

SUMMARY

Summary

- SOEC Electrolysis achieves an up to 20% higher efficiency compared to LTE technologies if steam is available → ideal partner to all integrated synthesis processes
- Technology is ready for deployment in large scale, although there are still challenges due to missing long-term experiences
- Hydrogen for refineries offers an immediate CO₂-reduction potential via blend in existing vehicle fleet
- Capability of Co-Electrolysis paves the path to competitive e-Fuels in the transport sector
- Direct Reduced Iron (DRI) process using green hydrogen allows a nearly complete decarbonization of the iron and steel industry

Acknowledgement

The SOC development activities received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 826350 (GrInHy2.0) and No 875123 (MULTIPLHY). The JU receives support from the European Union's Horizon 2020 research.

RENEWABLES EVERYWHERE

Oliver Posdziech · Sunfire GmbH · Gasanstaltstrasse 2 · 01237 Dresden · Germany www.sunfire.de · oliver.posdziech@sunfire.de