

Heather Wray

April 27, 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884226.

Contents

Introduction

□ The F-CUBED Concept & Project

□ The TORWASH[®] Process

□ The F-CUBED process

Cases: paper sludge, olive pomace, orange peels

Experimental results

Conclusions & Next steps

Introduction

F-CUBED Concept & Objectives

Hydrothermal conversion (TORWASH® process) of low quality biogenic residues into intermediate bioenergy carriers, increasing the flexibility of a renewable energy system.

OBJECTIVES

- Apply continuous hydrothermal and dewatering pilots in three industrial sites to prove the
 - concept → paper sludge, olive pomace and fruit & vegetable waste
- Increase the energy density of biogenic residues
- Demonstrate improvement in residue handling costs and reduction of GHG emissions
- □ Validate parallel recovery of value-added products

The F-CUBED Concept & Project

The TORWASH® Process

F-CUBED

The F-CUBED process

WP1. Enabling pilot testing

Optimisation of conditions

WP2, WP3, WP4 - Pilot campaigns on location

- □ Where residues are generated at industrial sites
- □ Move TORWASH[®] technology from TRL 3 to TRL 5
- Proof of concept for feedstock flexibility and bio-energy carriers production

2 Cases (feedstocks) considered

Paper (bio)-sludge (Smurfit Kappa)

Different types of paper sludge

- Biological (bio-sludge)
 - By-product of the wastewater treatment plant (aerobic/biological treatment) at the paper mill
 - Dry solids content varies from 1 4%
 - Difficult to dewater
- **Fibre sludge**
 - By-product of paper production containing solids in the form of short cellulose fibres
 - Easy to dewater
 - Can be re-used on site to make paper
- Mixed sludge
 - Mix of bio-sludge (40%) and fibre sludge (60%)
 - Dewatered to a dry matter content of 30 35% with polyelectrolyte addition

Olive pomace (CHIMIENTI Mill)

Chimienti Olive Mill location close to the TORWASH field testing «campus». *Source: APPO*

Olives processed : 90*10³ t/y Capacity: 18*10³ kg/h Olive pomace from the process: 67*10³ t/y

Olives ready to be processed. Source: CFE

Olive pomace

Fruit & Vegetable Residue (Delafruit)

CITRUS PLANT RAW MATERIAL

CITRUS PLANT WASTE

COLD PRESS VEGETABLE RAW

COLD PRESS VEGETABLE WASTE

Pilot-scale equipment

Results (so far...)

Preliminary testing

Biological paper sludge

- On-site testing in July 2021
- Over 400 hours of operation
- □ Low solids content in feed (1.5 1.8% d.s.)
- □ Filter cakes produced with approx. 40% dry solids
- No use of dewatering aids
- □ Volume reduction of 99% of residue
- **Solids upgrading**
 - 13% higher energy density
 - □ 85% lower Cl
 - 79% lower K
- Biogas production from filtrate fraction
 - □ Anaerobic biodegradability 62 %
 - □ Biogas potential 3.2 Nm³ CH₄/m³ effluent

On-site testing at Smurfit Kappa in Sweden

Solids Use

- Pellets (solid fuel)
 - Pellet durability >96%
 - Combustion testing in June 2022
- Use in steelmaking
 - Blended with anthracite for use in blast furnace injection process
 - Blend of 30% bio-sludge solids with anthracite was the most promising (in terms of safety and combustion efficiency)
 - P content is a limiting factor
 - Briquettes of bio-sludge solids with iron powder had high strength and density and are suitable for use in electric arc furnace charging

Olive pomace

- On-site testing in October 2021
- Over 300 hours of operation
- □ Filter cakes produced with approx. 58% dry solids content
- □ Olive oil recovered during dewatering (1% of filtrate) *lampante oil quality*
 - □ Volume reduction of 83% of residue
 - Solids upgrading
 - □ 21% higher energy density
 - □ 96% lower Cl
 - 95% lower K
 - Biogas production from filtrate fraction
 - □ Anaerobic biodegradability 57%
 - □ Biogas potential 5.7 Nm³ CH₄ / m³ effluent

Olive pomace

Pelleting difficult due to oily nature of the solids

- Pellets are a bit "sticky"
- Combustion tests in June 2022

Nutrient recovery

- Not beneficial from solid fraction
- From liquid fraction, recovery as struvite (NH₄Mg(PO₄)·6H₂O)

Precipitate from liquid fraction separated in the dewatering step Precipitate from post-digested effluent

Orange peels

On-site testing is currently happening
Solids dewatered to approx. 40% dry matter
Recovery of d-limonene in the reactor (~38%)

Orange residue: 22% DM TORWASH Feed: 4-6% DM Dry Cake: 39% DM Limonene: 2.3 mL/kg orange residue

5 Summary & Next Steps

Conclusions

- □ The TORWASH[®] treatment results in:
 - Efficient dewaterability with DM 40 % for paper sludge and orange peels & 60% for olive pomace
 - □ No need for dewatering aids
 - Removal of K and Cl from solids
 - Biodegradable liquid fraction
- Potential for creating added-value by:
 - Recovering P and N from solids (especially paper sludge)
 - □ Use of (paper sludge) solids in steelmaking to replace coal
 - Recovering oils (limonene, olive oil) during the process
- Optimization opportunities:
 - Pre-thicken / concentrate low solids feeds
 - Optimize the filter press operation to improve dewaterability

Next Steps

- Combustion testing
 - Evaluate the fuel quality of pellets produced from the three feedstocks

Economic and Environmental Impact

- □ LCA and TEE comparing reference cases to the F-CUBED cases
- □ Models (process model, reactor model, supply chain model)

Other ideas

- □ Scale-up opportunities
- Different types of residues or feedstocks or blends
- Other uses for solid/liquid fraction

F-CUBED

Any questions?

Heather Wray heather.wray@tno.nl

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 884226.

www.f-cubed.eu

Follow us on LinkedIn and Twitter @F_Cubed_H2020

Acknowledgment

The F-CUBED project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 884226

