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Hydrothermal liquefaction
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Results: APR with Pt/C with model 
compounds
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Aromatics

❖ Reaction conditions: 0.9 
wt.%, 2h, 270°C 

Compound Concentration 
(wt.%)

Glycolic acid 1.7-1.8

Acetic acid 0.8-0.9

Methanol 0.4-0.6

Acetone 0.07-0.1

Phenol 0.03-0.05

Aqueous phase composition from 
corn stover HTL1

APR spectators



Results: APR with Pt/C with 
lignin-HTL waste waters
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  Carbon weight concentration (wt % C) Inorganic species (ppm)  

Sample 
Glyc
olic

La
cti
c

Ace
tic

Meth
anol

Glyc
erol

Phenol
ic 

compo
unds

Na K Ca S P
TOC

(mgC/
L)

HTL-AP
0.04

7
0.11

2
0.0
83

0.138 0.029 0.116
518 281 13 116 11 11558

Characterization
HPLC chromatograms of the HTL-AP:    1: 
glycolic acid, 2: lactic acid, 3: glycerol, 4: 
acetic acid, 5: acetaldehyde, 6: methanol, 
7: catechol, 8: phenol, 9: guaiacol. 

Sample obtained with HTL at: 350°C, 
autogenous pressure, residence time of 
10 min, dry lignin-rich coproduct to 
water ratio of 10% by weight



Results: APR with Pt/C with 
lignin-HTL waste waters
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❖ Reaction conditions: 2h, 270°C,~1wt.% C, HTL-APInfluence of concentration

2nd test with the same residual 
aqueous feedstock but a fresh 

catalyst

1st test with decreasing H2 
production vs 

initial concentration
 (not only yield!)



Results: APR with Pt/C with 
lignin-HTL waste waters
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  Carbon weight concentration (wt % C) Inorganic species (ppm)  

Sample Glycolic Lactic Acetic Methanol Glycerol
Phenolic 

compounds
Na K Ca S P

TOC

(mgC/L)

HTL-AP 0.047 0.112 0.083 0.138 0.029 0.116
518 281 13 116 11 11558

Treated HTL-AP 1 0.049 0.102 0.078 0.124 0.022 0.056
190 140 15 19 1 10810*

Treated HTL-AP 2 0.051 0.109 0.051 0.099 0.020 0.017
n.a. n.a. n.a. n.a. n.a. 10540*

Treated HTL-AP 3 0.050 0.099 0.044 0.096 0.020 ≈ 0
350 233 0 53 43 10358*

Characterization

HPLC chromatograms of the HTL-AP:    
1: glycolic acid, 2: lactic acid, 3: glycerol, 
4: acetic acid, 5: acetaldehyde, 6: 
methanol, 8: catechol, 9: phenol, 10: 
guaiacol.

Treated HTL-AP 1-2-3: selective removal 
of phenolic compounds with DEE (7). 
* TOC includes residual DEE



Results: APR with Pt/C with 
lignin-HTL waste waters

8

❖ Reaction conditions: 2h, 270°C,0.9wt.% C, 
HTL-AP and Treated HTL-AP 1-2-3

Influence of concentration
and of phenolic compounds 

* Checked negligible 
APR activity of DEE

Positive effect 
towards H2 production 

coming from the 
removal of phenolic 

compounds



Results: APR with Pt/C with 
lignin-HTL waste waters
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❖ Reaction conditions: 2h, 270°C, 0.9wt.% C, glycolic acidCatalyst stability

Test with exhaust catalysts  
after a test with HTL-AP and 
HTL-AP3 (without phenolic 

compounds)

Pore plugging and Pt inaccessibility not 
fully prevented by DEE. 

In addition, other deactivation 
mechanisms could be present (i.e. S)



Results: continuous APR of 
lignin-HTL waste waters
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Continuous reactor testing
❖ Substrate concentration: 1 wt.% ( ≈ 0.3 wt.% C)

❖ Catalyst: 5wt% Pt/Carbon; 1 gcat

❖ Reaction time: 0h-10h

❖ Reaction temperature & pressure: 270°C, 60 bar

❖ τreactor ≈ 3.7 min

❖ WHSV = 0.36 gsubstrate /gcat·h

❖ Composition: Synthetic mixture and lignin-HTL 
waste waters

Effect of DEE-treatment and sulfur 
content (≈ 40 ppm SO4

2-)



Results: continuous APR of 
lignin-HTL waste waters
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Effect of initial SO4
2- contents

Synthetic mixture:

Compound Wt.%
Glycolic a. 0.16
Lactic a. 0.19
Glycerol 0.05
Acetic a. 0.19

Methanol 0.42

Reported conversion of 
glycolic a., being 

representative of the 
deactivation phenomena

WHSV = 0.36 gsubstrate 
/gcat·h

SO4
2-: 

APR catalyst 
destroyer



Results: continuous APR of 
lignin-HTL waste waters
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Synthetic vs real mixtures (untreated and DEE-treated)

Effect of partial removal of 
phenolics by DEE

Effect of residual phenolics 
+ irreversible sulfur 

adsorption

Combined deactivation 
phenomena

WHSV = 0.36 gsubstrate /gcat·h

0 ppm SO4
2- 

41 ppm SO4
2- 

44 ppm SO4
2- 



Results: continuous APR of 
lignin-HTL waste waters
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Treated real mixture for phenols and sulfur removal

WHSV = 0.1 gsubstrate /gcat·h

With the almost complete 
removal of sulfates, the 

remaining unreactive molecules 
partially saturate the active 

sites, yet not irreversibly, thus 
reducing the activity but also 
allowing to have a constant 

conversion. 

Effect of sulfur removal

Reactive 
molecules H2, CO2

APR

Unreactive 
molecules

Unreactive 
molecules

Adsorption

0 ppm SO4
2- 

8 ppm SO4
2- 



Concluding remarks

●  New classes of compounds were challenged against 
APR, with Pt/Alumina and Pt/C catalysts.

● Mixtures of compounds behaved differently than the 
single compounds tests

● Real waste waters from lignin HTL were investigated, 
evidencing strong deactivation phenomena

● The removal of the phenolic compounds seemed to 
reduce the fouling associated to these feedstock

●  Acid biomass hydrolysis leaves some sulfates in the 
HTL waste-waters, though highly deactivating the APR 
catalyst → strategies for SO42- removal must be 
implemented to reach stable operation (i.e. 
amberlite pre-adsorption bed).
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